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Abstract-The paper deals with the design of a shape of an element introducing the tangential
load into the spherical shell in a way avoiding strong concentration of stresses in the shell. The
shape of the attachment is obtained by solving two equations of compatibility of normal and
tangential displacements of the shell and the attachment.

1. INTRODUCTION

The problem of introducing concentrated loads into thin-walled structures is very important
from the technical point of view. These structures are usually designed taking into account
certain general loads which result from the basic nature of the structure. For example,
the thickness of the shell of a container for gas or liquid is designed taking into account
the internal pressure. The stresses resulting from the local loads or from discontinuities in the
structure are often disregarded. But we know, that the structure can be damaged as a result
of an improper introduction of relatively small local loads. This problem is especially
important in the case of fatigue loads when the local concentration of stresses is most
dangerous. The subject of this paper is the design of a shape of the element introducing the
load in the spherical shell in the form of advantageously distributed tangential and normal
forces. Under the term" advantageously distributed forces" we understand the forces
which do not produce a strong concentration of stresses in the shell. It is known that in­
finitely large stresses can appear not only in the case when the load acts on a very small area
of the structure but also when the load is introduced in an improper way. Let us consider
a following example. We introduce the load into a sheet through a bar of constant cross­
section jointed with the sheet along a certain segment. Solving this problem by means of
the equations of the linear theory of elasticity we find that the infinitely large stresses appear
in the sheet at the ends of the segment of the joint. Even in the case when we apply the load
to the sheet in the form of the line forces uniformly distributed along the segment of the
joint the singular stresses appear at the beginning and at the end of this segment. We can,
however, avoid the concentration of stresses by appropriate design of the shape of the bar,
by changing for example its cross-section. The paper [1] was devoted to the analysis of this
problem.

2. CONDITIONS OF COMPATIBILITY

Let us consider two bodies jointed over the surface S. The following equilibrium and com­
patibility conditions should be satisfied (Fig. 1)

T1 = T2 = T
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Fig. 1.

where Ti are the vectors of the surface forces in the junction,
U j are the vectors of the displacements.

Indices 1 and 2 denote the first and second body respectively. The compatibility equations
can be presented in the form of the integral equations

(1)

where K1 and K2 are the influence functions (Green's functions) for the displaceme'nts or
strains for the first and second body. S is the surface of the junction. If we know the form
of both bodies and their boundary conditions, we obtain, solving the equation (1), the
distribution of the forces acting between these bodies. These equations can be used, however,
for designing an appropriate shape of the jointed bodies if we consider the Green's functions
as the unknowns and assume the advantageous distribution of the forces in the junction.
If we look only for certain parameters of the influence functions, the equation (1) becomes
ordinary algebraic equations which can be solved easily.

Let us consider particularly the case of the spherical shell loaded by a force P acting in the
direction tangential to the shell surface.

We assume on the surface of the shell the local system of nondimensional coordinates
x = x/I, y = y/I referred to the characteristic length 1= y/Rh/112(l - Vi) with the origin
at the equator. The direction of the coordinate x follows the direction of the meridian and
that of the coordinate y the direction of the equator.

Let us introduce the force into the spherical shell through a thin flat attachment jointed
with the shell along the line x and perpendicular to the shell surface (Fig. 3).

The shape of the attachment is the aim of our investigations. We shall define it in such a
way that the forces of the reciprocal actions between the shell and the attachment do not
produce strong concentration of stresses in the shell.

Since the attachment is directly connected with the shell, the following compatibility
conditions should be satisfied in the common points of the shell and the edge of the attach­
ment

where VS, VR and ws , WR are the tangential and normal displacements of the shell and the
attachment respectively. Instead of these conditions the following more convenient con­
ditions can be applied,
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where €s and €R are the strains along the junction and w~, w~ are the changes of the curva­
ture; w" = 82 W / 8x2

• If we assume that between the shell and the attachment act the normal
and tangential line loads only we can present the above conditions in the form of the follow­
ing integral equations.

+a

w~ = - J [Kin(x, ¢)n(¢) + K 1t(x, ¢)q(¢)]d¢ = wi
-a

(2)

liS = r [K 2n(x, ¢)n(¢) + K 2 rCx, ¢)q(¢)]d¢ = €R
-a

where x = x/I = cpR/I, ¢ = W= ljJR/I, a = CPo R/I, are the non-dimensional coordinates re­
ferred to the characteristic length I; q(¢) and n(¢) are the tangential and normal reactions
between the shell and the attachment. The quantities Kin, K 2n , Kit and K 2t are the influence
functions for the spherical shell.

Kin(x, ¢) denotes the change of the curvature 82w/8x2 produced at the point x by the
normal unit load n = I applied to the shell at the point ¢.

K 1t(x, ¢) denotes the change of the curvature 82w/8x2 produced at the point x by the
>unit tangential load q = I applied at the point ¢.

K2n(x, ¢) denotes the strain lixx produced at the point x by the normal unit load n = I
applied at the point ¢.

K2t(x, ¢) denotes the strain lixx produced at the point x by the tangential unit load q = I
and applied at the point ¢.

These functions can be found on the basis of the solution for the spherical shell loaded by
concentrated unit tangential and normal forces [2]. We have
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KIn = w"(n = 1) = - _1_ [ker(X ~) __1_ kei'(x _ ~)]
2nD (x - e)

K- "() kl [ 2 ( 1 ')It = W q = 1 = (l + v) -- --- + ker'(x - ()
2nRD (x - ()l (x - () ,

+ x ~ (kei(x - e) - kei'(x - ~)].

The strains in the external surface of the shell are defined by following equation:

then the functions K1n and K1t are [2]

(3)

K 2n = GxxCn = 1) =~7) [1 + v (ker'(X _ () + __1_)
E"h" x - ~ x - e

+ vkei(x ~) + J37I-=--'V1
) (ker(X - e) - x ~ ~ kei'(x - ~»)].

K1t = Gxx(q = 1) = - ~1 ; ~)~ { [1 - (I + V)(ker(X - () - _2_ kei'(x _ (»)] _1_ (4)
1!"" x-e X-(

+ vker'(x - e) + J3(l='~ [ 2 1 (_1_ + ker'(x - ~»)
(x - e) x e

+ x ~ ekei(x - e) - kei'(x e)]}.
where k = 1 for x > eand k= -1 for x < eo The introduction of the nondimensional func­
tions is convenient for numerical calculations. We denote

I _
KIn = - --KIn

2nD

I + v I _
KIt = -- -- K lt2 DR

J3(f'='-v1 ) _

K 1n = E h1 K 1n

" "

(5)

The above functions are presented graphically in Fig. 3 for v = 0·3.

3. DISPLACEMENTS AND STRAINS OF THE ATTACHMENT

If we consider the attachment as a flat sheet, the calculation of the strains at its edge is
rather complicated. Assuming that the attachment is a slender element, we can calculate its
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(6)

strains and displacements in the same way as for a bar under bending and tension. The
strains of the attachment in the points where it is jointed with the shell are

M N
B R =--+--

x WRER ARER

where A R is the surface of the cross-section of the attachment, WR is the section modulus
of the attachment, and ER is the modulus of elasticity of the material of the attachment.
The internal force N and the bending moment M can be calculated from the equilibrium
equations in the following form

I

'I'o
N = [q(l/f)cos(l/f - cp) - n(l/f)sin(l/f - cp)]Rdl/f

'I'

M = (0 [(R + h2R cos Y)COS(l/f - cp) - R] q(l/f)Rdl/f (7)

- fO (R + ~R cos Y) sin(l/f - cp)n(l/f)Rdl/f.

If the height of the attachment hR is not too big in comparison with the radius of the shell,
it can be assumed that cos Y~ I (Fig. 3). Then the strain in the attachment along the line
of the joint takes the form

BXR = ~E fO {COS(l/f - cp) - RAR [(1 + hR)cOS(l/f - cp) - l]q(l/f)Rdl/f
A R R 'I' WR 2R

- (0 [E
R

1
A

R
+ ERRW

R
(1 + ~;)] sin(l/f - cp)n(l/f)Rdl/f}. (8)

The change of the curvature w~ can be found from the equation

wi =~ = _1_ {I'I'°R[(1 + hR)cOS(l/f - cp) - l]q(l/f)Rdl/f
ERJR ERJR '" 2R

- (OR(1 + ~;)sin(l/f - cp)n(l/f)Rdl/f}. (9)
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The equations (2) together with (6), (8), (9) define the solution of the given problem. If we
are looking only for reaction forces q and n, these equations create the set of two integral
equations in respect to these two functions. However, if we consider as the unknowns the
parameters determining the shape of the attachment, we obtain the set of two algebraic
equations which can be solved immediately. Since we have to satisfy two equations we can
define only two parameters determining the shape of the attachment.

Forces nand q should be assumed in such a form that they do not produce singular
stresses in the shell. This can be done if, for example

where

1

- . ~) 21' y

11( 0 = 11 0 _1 - (; 0 - ~ (l0)

~ = Rt/J, ~=W=t/JRII, a = all.

It can be easily proved that the forces distributed in such a way ensure relatively uniform
effort of the material of the shell in the area of the joint. The values qo and no can be found
from the equilibrium equations of the attachment. Namely, the conditions of the equilibrium
of the moments give the relation

Pee + R) = r q(~)Rd~
-a

where e is the distance between the point of the application of the load and the external
surface of the shell. The condition of the equilibrium of the attachment may be expressed by

f
q>o

[-n(t/J)sin t/J + q(t/J)cos t/J]Rdt/J = P.
-q>o

We find from the first equation

15 e + RP
qo = T6-R-~'

The second equation expresses the relation between the force no and the distance e.

4. ATTACHMENT OF RECTANGULAR CROSS-SECTION

If we assume that the cross-section of the attachment is a rectangle of the dimensions
hR and bR we have

Introducing it to the equations (I) we obtain the following set of equations

6A(<p) 12B(<p) "
------=ws
bR h~ bR h~

(ll )

I fq>oA(<p) = - [cos(t/J - <p)q(t/J) - sin(t/J - <p)n(t/J)]Rdt/J
ER q>

I fq>oB(<p) = - ([l - cos(t/J - <p)]q(t/J) + sin(t/J - <p)I1(t/J)}Rdt/J.
ER q>

(12)
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Solving this set we find the following equation for hR'

2 3( 8XS)h 8xS 0hR - - »R + - R + 3»R - = .2'J w" ., w" ,

The solution takes the form:

B
YJ = -.

A

where

If B/A ~ 1 we obtain from (13)

(13)

hR ~ hR

where the sign - corresponds to the real value of the height of the attachment. The real
solution for the case when B/A is not a small value exists only if

- -2

I'}2 _ ~ hR I'} + hR > O.
3 R 4R2 -

From this inequality we have two conditions

h
~~3 or

The formula for the thickness of the attachment bR can be found from one of the equations
(11). For example, from the first equation we get

b
R

= ~ [4A _ 6BRJ. (14)
8xS hR h~

The relations (13) and (14) define the shape of the attachment for the assumed distribution
of the tangential and normal forces acting between the attachment and the shelL

Figures 4 and 5 present the height and the width of the attachment for the different ratios
of a/I and aiR = 0'3, when the load is applied in the shear center of the tangential forces
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q('). It gives n(,) = O. If the load is applied only in one cross-section of the attachment we
observe that its width increases there to infinity. The finite width is obtained for the case
when the load is distributed along a certain distance, The broken lines in Fig. 5 correspond
to the case when the force P is uniformly distributed along the distance 2c = 0·40.

It is interesting that the height of the attachment does not decrease to zero at the ends of
the joint. However, the bending and tensile rigidity of the attachment is there equal to zero.
For thinner shells the height of the attachment becomes smaller and the attachment has a
form of a slice of almost constant thickness. Assuming that the attachment works like a bar,
we have to assume at the same time that the shear forces are distributed linearly along the
joint. In the real structure the attachment is usually welded to the shell at the boundary and
therefore the assumed model of the joint is only an approximated model. The result of the
calculations relating to the case when the force P applied to the shell does not lie in the shear
center are presented in Figs. 6 and 7. The curves for the height are obtained for the
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different values of the ratio d/a (see Fig. 3) and aiR = 0·3, 2a/1 = 6 d is the distance of the
shear center from the point of application of the load. The width of the attachment is shown
in Fig. 7. Figure 8 shows the shape of the attachment for the case when the load is uniformly
distributed along the distance 2c = 0·4a. This shape results from the Figs. 4 and 5 for value
of the ratio d/a = 0·05. The broken lines present the shape of the attachment when the load
is applied in one cross-section.
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PeJIOMe - HacTOlllllall pa60Ta rrOCBlIIlIeHa rrpOeKTHpOBamuo ljJOPMbl 3JIeMeHTa BBO).J.lIll1ero
Harpy3Ky, HanpaBJIeHHYIO rro KaCaTeJIbHOH, B cljJepH'IecKYIO 060JIO'lKy TaKHM 06pa30M, '1T06bf
H36elKaTb CHJIbHYIO KOHl\eHTpal\HIO HarrplllKeHHH B 060JIO'lKe. <l>OpMy rrpHcrroc06JIeHHlI
rrOJIyqaIOT rryTeM peIlIeHHlI ).J.ByX ypaBHeHHH COBMecnlMOCTH HOpMaJIbHOrO II KacaTeXlbHoro
cMe)KeHHH 060JIO'lKH H rrpHCIIOC06JIeHHlI.


